To establish a safe human–robot interaction in collaborative agricultural environments, a field experiment was performed, acquiring data from wearable sensors placed at five different body locations on 20 participants. The human–robot collaborative task presented in this study involved six well-defined continuous sub-activities, which were executed under several variants to capture, as much as possible, the different ways in which someone can carry out certain synergistic actions in the field. The obtained dataset was made publicly accessible, thus enabling future meta-studies for machine learning models focusing on human activity recognition, and ergonomics aiming to identify the main risk factors for possible injuries.
Loading....